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INTRODUCTION

An equidistributed mesh in one space dimension is a partition of a aiven

domain into subintervals such that some given quantity is uniform over each

subinterval. More specifically, given an interval (a,b) and a positive weight

function w(x) defined on (ab), then an equidistributed mesh is a partition

fa = x0 < x, < x2 < ... < XM I < xM = bj

such that

x.f w(x)dx = constant = ! w(x)dx , j = 1,2. M (1)Xjl M a

The usual application of such a mesh is for approximating functional rela-

tionships to a certain accuracy with a minimum number of mesh points by choosing

w(x) appropriately (ref 1). Equidistribution strategies have also been used in

numerical methods for solving two-point boundary value problems (refs 2.3).

This is because it has been shown (refs 4,5) that the task of selecting a mesh

to minimize the discretization error is asymptotically equivalent to equidis-

tributing the local discretization error.

The successes in the above fields of functional approximation and numerical

ordinary differential equations have led some investiqators to consider the use

of equidistribution strategies for generating moving meshes in the field of

numerical partial differential equations (PDEs) (refs 6-8). The general frame-

work is to simply reconsider Eq. (1) with a time dependency. That is to say.

the problem is now to determine a dynamic mesh

fa = x0 < x1 (t) < x2 (t) < ... < xM_1(t ) < xM = bi

at time t so that

xJ(t) I b
f (t) w(x,t)dx = c(t) = b w(x,t)dx , j = 1,2,..., M (2)
Xj..1(t) M a
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where the positive weight function w(x,t) is usually chosen to be a function of

the solution of the underlying POE. For example, w has been chosen to be pro-

portional to the solution's gradient, curvature, and local discretization error.

When applying Eq. (2) in some numerical scheme, most investigators move a

fixed number of points to follow and resolve local nonuniformities in the solu-

tion. In order to guarantee a certain accuracy, they must be sure that this

fixed number is large enough to approximate the solution throughout the entire

spatial domain for the entire temporal "life" of the solution. Some see this as

a limitation since the correct number of fixed points necessary is not generally

known a priori.

Also, this moving mesh is not operating in a vacuum. It is being used in

conjunction with some numerical solution procedure. Since the accuracy of most

such procedures can depend on the shape of the space-time arid, sometimes the

equidistribution law can be too dynamic and deform the grid enough to introduce

a new, even larger source of error. This can happen even if the equidistribu-

tion law does not demand much moving of its own accord. If a nonequidistributed

mesh is used as the initial mesh, then the grid can deform drastically as the

moving mesh tries to relocate to the proper equidistributed positions. In order

to avoid these difficulties, some investigators have abandoned moving altogether

and developed local refinement methods (ref 3).

A local refinement method is a procedure where uniform fine grids are added

to coarse grids in regions where the solution is not adequately resolved.

Although they can guarantee a solution to a prescribed accuracy, they can be

costly, as they involve recomputing the solution, and they are not as good as

moving mesh methods at reducing dispersive errors in the vicinity of wavefronts.
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The choice here has been to combine local refinement with mesh movinq based

on eauidistribution. The purpose is twofold. First, the refinement procedure

is incorporated to avoid any drastic deformation of the arid by the moving mesh

as well as guarantee a orescribed accuracy. Second, the mesh moving is applied

in order to obtain as accurate a solution as possible for any given discretiza-

tion to delay the need for refinement for as long as possible and thus to reduce

the costs involved.

Equation (2) as it stands, however, is not easily partnered with a refine-

ment scheme. It is too dependent on mesh position and the number of extant mesh

points. Hence, a refinement step can disrupt the nature of the equidistribution

and cause a drastic change in the mesh dynamics similar to that caused by a

"bad" initial mesh.

The attempt to overcome the difficulty reported here was to try to extend

Eq. (2) in such a way that it worked with the refinement procedure rather than

against it. It seemed that the dynamics of Eq. (2) was based on the static

spatial nature of Eq. (1) and an extension was needed that incorporated more of

the time dependency of the domain and solution process.

In the next section, this extension of Eq. (2) is presented as well as the

algorithm for coupling the refinement and moving procedures. Then, in the

following section, results on a series of test cases are presented for com-

parison. In the Discussion section, the characteristics of the extended

equidistribution law are discussed in light of the results of the previous sec-

tion. Finally, in the last section, some conclusions are presented.

PROCEDURES

The basic principle behind this extension of Eq. (2) is to try to

equidistribute temporal properties as well as spatial. To this end, consider a
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typical time interval of interest (O,T) and a discretization

(0 = to < to < t1 < t2 < ... < tN I < tN = T}

of that interval. Then, given any time level tn_ 1 and any mesh

n-1 n-1 n-1 n-i
fa = x <xi < x2  < ... <xM = bf

at that time level, requires the new mesh
n n n n n

(a = xO < xi < x <... < x-1 < XM = bi

at the next time level tn to satisfy

n n-1xjxj b f

w(X'tn)dX = f n-1 w(xntn-I)dx + A (Ia w(X'tn)dX - fa w(Xtn-I)dx}
xj-I xj-I

j = 1,2.... M (3)

Note that Eq. (3) is not an equidistribution law in the sense of Eqs. (1)

and (2). No quantity is being held constant over any subinterval by the

enforcement of Eq. (3). Rather, it is the change in the quantity w over each

new subinterval

(x j_ 1 ,x j)

that is allowed to vary by a constant amount (which is proportional to the total

change in w from tn_ 1 to tn) when compared to its values over the old subinter-

val

n-1 n-1

In a sense then, it is the time change of this quantity that is being

equidistributed.

Note also that the relationship between old and new meshes is not as

dramatic as in Eq. (2). If

Jx- Jfx i 1=o

is a "bad" mesh, e.g., suppose it was readjusted by a refinement procedure, then

Eq. (3) simply requires that
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differs from

by a constant amount over each subinterval and does not require any drastic

readjustment to a new equidistributed position.

In order to test the performance of Eq. (3) and its postulated properties,

it was incorporated into a numerical POE solver that already implemented an

automatic refinement strategy. The overall solution algorithm is as follows:

1. Move mesh to next time level according to Eq. (3).

2. Solve POE using finite elements in space and finite differences in

time.

3. Estimate error that occurred in the solution process.

4. If the error is less than or equal to a prescribed tolerance and the

time level is less than T, then go to step 1.

5. If the error is greater than the tolerance, refine in either space or

time or both, then go to step 2.

6. If the time level is greater than or equal to T, then stop.

RESULTS

The following POE was solved numerically for all test cases:

1 1

Ut - ux(1 + 16 u) = 2 Uxx ' 0 < x < I , t > 0

u(x,O) = tanh 10(x-1) , 0 4 x 4 1

u(O,t) = tanh 10(-1+t) , t ) 0

u(1,t) = tanh lot , t ) 0

The exact solution, u(x,t) = tanh 10(x-l+t), is simply a wavefront that moves

through the spatial domain from right to left as time progresses. Optimally,
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the mesh should try to follow the front as it moves across the interval (0,1).

For all cases, the L2 norm of the error was prescribed to be less than a

tolerance of 0.01, an initial uniform mesh with 11 points (M = 11) and an ini-

tial time step of 0.05 (At = 0.05) was input, and the solution process was

allowed to proceed for 75 time steps.

Case 1

For this case, no movement was allowed--only refinement. Mesh trajectories

are shown in Figure 1. At the end of 75 time steps, N = 37 and At = 0.00218.

t

x

Figure 1. Mesh trajectories for case 1.
Horizontal lines indicate a
temporal refinement has occurred.
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Mesh Trajectories for Case 1. Stars on x-axis indicate the mesh input

before any moving or refining. Horizontal lines indicate a temporal refinement

has occurred (actual values of At are not shown).

Case 2

For this case, movement was based on the first time derivative of the solu-

tion (w(x,t) = l utx,t)l ). Mesh trajectories are shown in Figure 2. At the end

of 75 time steps, N = 40 and At = 0.00579.

t

x

Figure 2. Mesh trajectories for case 2.
Horizontal lines indicate a
temporal refinement has occurred.
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Mesh Trajectories for Case 2. Stars on x-axis indicate the mesh input

before any moving or refining. Horizontal lines indicate a temporal refinement

has occurred (actual values of At are not shown).

Case 3

For this case, movement was based on the second spatial derivative of the

solution (w(x,t) = 1 uxx(x,t)l ). Mesh trajectories are shown in Figule 3. At

the end of 75 time steps, N = 23 and At = 0.00201.

t

IP

Figure 3. Mesh trajectories for case 3.
Horizontal lines indicate a
temporal refinement has occurred.
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Mesh Trajectories for Case 3. Stars on x-axis indicate the mesh input

before any moving or refining. Horizontal lines indicate a temporal refinement

has occurred (actual values of At are not shown).

DISCUSSION

Overall, the results are very encouraging. The mesh trajectories flow

smoothly with whatever solution characteristic the equidistribution law is

based. This is true even when the initial mesh is unrelated to the equidistri-

bution rule and when the refinement procedure alters the mesh (see Figures 2 and

3). This is exactly as desired and postulated.

Furthermore, it seems that mesh moving can decrease the amount of refine-

ment necessary for a given problem as hoped. This is evident when comparing

case 1 with cases 2 and 3.

In case 2, the level of temporal refinement is less than in case 1 for the

same number of time steps and the same tolerance level. This is as expected

since the temporal component of the error is proportional to a time derivative

of the solution. Hence, movement based on equidistributing this error should

reduce the temporal refinement necessary.

Similarly, in case 3, the level of spatial refinement is less than in case

1. Once again, this is as expected since the movement here is based on a quan-

tity proportional to the spatial component of the error.

CONCLUSIONS

Whether or not this new moving scheme will develop into a robust numerical

procedure is still uncertain. There are still stability questions to be

answered as well as some implementation difficulties not addressed here.
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However, the results presented here give credence to the notion that mesh

moving and refinement schemes can be successfully combined. Refinement proce-

dures do not have to interfere with mesh movement, and mesh movement can be per-

formed to reduce the levels of refinement necessary to solve a problem to a

given tolerance.
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